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Abstract. The conditions of applicability of the Hill determinant method to the potentials 
V ( r )  = u , r +  u z r z  and V ( x )  = x 2 +  A x 2 / (  1 + gx2) are investigated. It is shown that the pro- 
cedure leads to the actual eigenvalues in the former case provided the ansatz is properly 
chosen, but it completely fails to yield the right answer in the latter one. 

1. Introduction 

Non-perturbative techniques have been successfully applied to the calculation of the 
eigenvalues of anharmonic oscillators and central-field models [ 1,2]. Among them, 
the Hill determinant method ( H D M )  seems to be preferred by most authors [3-61 
because of its simplicity. However, it has been proved that in some cases the HDM 

may be divergent or even yield unphysical eigenvalues. 
Flessas and Anagnostatos [7] argued that the vanishing of the Hill determinant is 

insufficient to assure the physical behaviour of the wavefunction. Hautot [8] showed 
that the HDM actually applies to the anharmonic oscillator x2+  Ax4 as suggested by 
previous accurate numerical calculations [ 1,3]. 

Upon investigating the anharmonic oscillator ux2 + bx4+ cx6 Chaudhuri [9] proved 
that the roots of the Hill determinant differed from the actual eigenvalues when the 
Schrodinger equation was transformed into a three-term recurrence relation. More 
recently Killingbeck [ 101 showed that supersymmetric pairs of potentials have common 
true and false eigenvalues and developed a criterion, based on the expectation values 
of x2, for distinguishing between them. An improved procedure was put forward by 
Tater [ l l]  but it is not as simple as the standard HDM. The same potential was also 
investigated by Hautot [12] who found the conditions of applicability of the HDM by 
studying the asymptotic form of the solutions of the HDM difference equations and 
the eigenfunctions obtained from them. He concluded that the HDM does not always 
assure the square-integrability of the eigenfunction. 

The rotating oscillator was also under dispute. Masson [ 131 reviewed the problem 
and pointed out that some authors had obtained wrong eigenvalues through the HDM 

or an equivalent approach based on continued fractions. Killingbeck [ 141 showed 
how to remove the difficulty numerically but he did not give a rigorous mathematical 
justification. 

t To whom correspondence should be addressed. 
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The applicability of the standard H D M  to rational potentials such as x2+  
Ax'/(  1 + gx') has not been discussed. Hautot [4] obtained the eigenvalues by expanding 
the wavefunction in the harmonic oscillator basic set. Exact solutions for particular 
choices of A and g values were given by Whitehead [ 1 5 ]  and Chaudhuri [16] but they 
did not consider the general case. 

The purpose of the present paper is to investigate the applicability of the H D M  to 
the last two problems which are discussed in sections 2 and 3, respectively. Further 
comments are found in section 4. 

2. The rotating oscillator 

The rotating displaced oscillator is one of the simplest approaches to a rotating vibrating 
diatomic molecule. The radial part of the Schrodinger equation can be written (units 
are chosen so that h = 1): 

( 1 )  

where D = d/dr, $ ( O )  = $(m) = 0, I = 0, 1, . . . , is the angular momentum quantum 
number, and a is a model parameter. 

{ - D 2 +  I ( / +  1 ) / r 2 +  ( r  - 1)2/4a2}@ = ( n  +$)$/a 

It is convenient to consider the more general problem: 

{ - D 2  + I (  I +  l ) / r 2  + ulr + uzrz} = E$. (2) 
The choice U, = -2u2 = -1/2a', E = ( n  +;)/a - 1/4a2 leads to (1). 

asymptotically as 
Equation (2) has two linearly independent solutions &,,,,, and &,> which behave 

when r + CO. 

On introducing the ansatz 

into (2) it is found that the coefficients C, satisfy the following five-term recurrence 
relation: 

( j  + 2) ( j  + 2 I + 3) c,,, - (2j  + 21 + 4) a c,, I + [a :  + E - (2j  + 21 + 3 ) I  C, 

wherej=-1,0,  1 , .  .., and C,=O i f j < O .  
The H D M  consists of choosing those E values for which the determinant of this 

set of linear homogeneous equations truncated up to CN vanishes. This criterion 
proves to be equivalent to the boundary condition C,,, = 0. 

I f  a ,  = v 1 / 2 u ~ "  and u2 = u ; ' ~ ,  (5) becomes a three-term recurrence relation which 
is amenable to continued fraction or tridiagonal matrix eigenvalue techniques. 
However, the procedures related to the HDM are useless when u1 < O .  

Killingbeck [14] chose a' = U:'* and a ,  = Ra, for the rotating oscillator (U, = - 2 4 )  
and proceeded to calculate the HDM eigenvalues for several R values. The method 
yielded the actual eigenvalues when R > 1.5 and those of the partner potential (which 
has the sign of u2 reversed) when R < 1 . 5 .  This fact explains the failure ofthe procedures 
based on the three-term recurrence relation ( R  = - 1). 

+(2u,a*-  V,)C,-, + ( a : -  U,)CJ_, = 0 ( 5 )  



On the Hill determinant method 2397 

Killingbeck’s [14] results can be easily proved in a rigorous way. To this end we 
set a 2 =  u;I2 and a,  = R v , / ~ u : ’ ~ .  Therefore when R = -1  we have a three-term recur- 
rence relation and it is shown below that: 

(a) if U ,  > 0 the HDM coefficients CJ lead to a function @ = CO+ Clr +. . . + Cnr” +. . . 
bounded on the whole real axis so that $ - $,,,, (cf (3)  and (4)) at infinity. 

(b) If 01 < 0 then - $d,” and the H D M  is unsuitable. 
The theory of linear difference equations [4, 17,181 tells us that any hth-order linear 

homogeneous recurrence has h independent solutions C‘”, Cj2’, . . . , Cjh’ that are 
asymptotically well contrasted, i.e. I C;”I 2 1 Cj2’1 3. . .a I Cj ’1 for large enough j .  C:”, 
Cjhl and Cj’) ( 1  < i < h )  are termed dominant, subdominant and intermediate, respec- 
tively. It is well known that C:” and C:hl are stable when using the forward and 
backward (i.e. Miller’s algorithm) recurrences, respectively [ 18,191, The other solutions 
can be selected by means of the extended Miller’s algorithm due to Oliver [20]. Besides, 
Hautot [8,12] showed that setting the Hill determinant equal to zero amounts to 
searching for Cj2’. The asymptotic form of Cj2’ determines that of @. In order to 
obtain the latter one we proceed as discussed by Hautot [ 121. Stirling’s formula and 
the saddle-point method lead to 

/I 

X 2 GrJ = exp[f(j, r)I  - exp[f(j, r ) l  d j  - exp[f(j*, r)I ( 6 )  
J - 0  J = O  

where f(j, r )  = In C, + j  In r and j *  is a root of af/aj = 0. 

are found to be asymptotic to 
For the particular case discussed in ( a )  and ( b )  one has h = 2 and the solutions 

It follows immediately that C;’) - Z:” or C:” - Z j 2 )  provided U, > 0 or U, < 0, respec- 
tively. Since @[Zj”] - exp(2a,r + a2r2)  it is concluded that @[Z)”] has to be bounded. 
Therefore the standard HDM will lead to a bounded eigenfunction only when u , > O ,  
because in this case Cj2’ - Zj2’. 

When R Z -1 we have a four-term recurrence relation (third-order difference 
equation). The three linear independent solutions are asymptotic to 

1 / 2  1 / 2  * exp[(aI - a2)(2a2)- j 1 Z:I I = (2a2)J/2r(j)-1/2j-(0,-0z)*/164 

zj21 = ( - l y ( 2 a 2 ) ~ / 2 r ( j ) - ’ / 2 j - ~ ~ ~ - ~ ~ l z / ~ 6 ~  *exp[(~z-a1)(2az)-  j 1 (8) Liz 1 / 2  

zj3) = ( a ,  + a , y r ( j ) - l .  

If R >  1 then a,>  a2 and ~ Z ~ ” ~ > ~ Z ~ 2 ) ~ .  It follows that 12)~’-2:~’ with the initial 
conditions Cj2’ = 0 if j < 0. On arguing as before it is found that Cj2’ leads to I+!I,,,, 
and therefore the HDM yields the actual eigenvalues for all U, and u2 values. If, on 
the other hand, R < 1 ,  then the HDM selects l j ld lv  and the actual eigenvalues are not 
obtained. It is certainly difficult to explain how the eigenvalues of the partner potential 
occur when negative R values are used. However, the present argument clearly shows 
why Killingbeck [ 141 obtained the ‘physical’ eigenvalues when R > 1.5. Besides, when 
1.5 > R > 1 the R values are close to the critical value and the convergence is expected 
to be slow, in agreement with Killingbeck’s results [14]. 
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3. Rational potential 

The Schrodinger equation 
-$”( x )  + [x’+ A x * / (  1 + gx’)]$(x) = E$( X)  (9) 

where - m < x < m ,  has been studied by many authors using variational techniques 
[21,22], perturbation theory [23] and the perturbed operator method [24]. Exact 
solutions can be found for particular values of A and g [15 ,  16,25-271. 

When the wavefunction is written as a linear combination of harmonic oscillator 
eigenfunctions the H D M  proves to yield the actual eigenvalues [4]. If, on the other 
hand, the wavefunction is written 

X 

(10) 2 $(x)  = P (  t )  e-”I P (  t )  = 1 CJtJ t = x  
J = o  

the following three-term recurrence relation is obtained [ 15,  161: 

2 (  j + 1 ) (  2j + 1 )  C,+l + [ E  - 1 +j(4gj - 2g - 411 C, + [ Eg - A - g + 4g( j - 113 C,-l = 0 

j = 0,1,  . . , . ( 1 1 )  
Whitehead et a1 [15] pointed out that the coefficients C, obtained from ( 1 1 )  satisfy 
C,+,/ CJ + 0 as j + W. This is certainly not the case because, according to the PoincarC- 
Penon theorem [ 18,281, there are two solutions, namely C:” and Cj”, leading to 
Cji’J C:I’+ -g and C:’+i,/ Cj2’+ 0 a s j  + oc. The asymptotic behaviour of Cjll originates 
in the singular point of the potential at x=*ig.  Furthermore, a straightforward 
calculation shows that C:’) and C:” are asymptotic to 

Z;’) = (-g)?-2 exp[-(1 + A/4g+g/2)/gj] 
z:2 i = j l  A - g - Eg I /4g r( j ) - ’  exp[(h - g - Eg)/32g2jI (12) 

respectively. 
Therefore, on proceeding as before one concludes that the non-dominant solution 

Cj2’ selected by the H D M  leads to P ( t ) - e ‘  (up to unimportant factors). In other 
words the H D M  fails to give a well behaved wavefunction except in those cases where 
P ( t )  has a finite number of terms [lS, 16,25-271. 

One may try to improve the H D M  by choosing the more general ansatz 

(13)  $ = P ( t )  

that gives rise to the four-term recurrence relation: 

- (2j  + 1 ) ( 2 j  + 2) C,,, + [p(4j + 1 )  - E - 2gj(2j - l)]C, 

If p>O the three solutions C;’ ) ,  C;” and Cj3’ are found to be asymptotic to (up to 
unimportant factors) 

+ [gp(4j - 3) - p 2  + A + 1 - Eg]C,-, + g(  1 - p’ )  CJ-I = 0. 

&7;”=(-g)Jj-2 

(14) 

z;*) = ( p  + 1 ) ’ / 2 q j )  ( 1 5 )  

respectively. Therefore, the H D M  does not yield a well behaved eigenfunction because 
C:*’ leads to P( 1 )  - exp[(p + l)t/2] for large t values. A similar conclusion can be 
drawn for p < 0, showing that the standard H D M  cannot be improved in this case by 
means of the adjustable parameter p. As said before, if P is written as a linear 
combination of Hermite polynomials the H D M  yields the actual eigenvalues [4]. 

zj3) = ( p  - 1)’/2’r(j) 
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4. Further comments and conclusions 

I t  has been shown that the H D M  applies to the rotating oscillator provided the ansatz 
is properly chosen and that such a method is useless in treating certain rational 
potentials. It has not been difficult to give rigorous proofs because in both cases the 
HDM gives rise to finite-order difference equations. 

Other problems cannot be treated so easily. For instance, in order to apply the 
HDM to the rotational-vibrational motion of diatomic molecules one has to expand 
the internuclear potential in Taylor series around the potential minimum and the 
resulting difference equation has an infinite number of terms [6]. In such a case the 
applicability of the H D M  may be determined by numerical investigation. 

In closing it is worth mentioning that the HDM does not provide bounds to the 
energy levels. Upper bounds to them can be obtained by the closely related zero- 
coefficient method, which is a particular form of solving the Rayleigh-Ritz secular 
equations [29]. General powerful methods for obtaining bounds to the properties of 
a quantum mechanical system are available. Among them we mention the inner 
projection method [ 301 and Pad6 approximants of the generalised Brillouin- Wigner 
perturbation theory [31]. 
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